a2 United States Patent

Segall et al.

US009325999B2

US 9,325,999 B2
Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

VIDEO DECODER FOR SLICES

Inventors: Christopher Andrew Segall, Camas,
WA (US); Kiran Misra, Vancouver, WA

(US)
Assignee: Sharp Kabushiki Kaisha, Osaka (JP)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1228 days.
Appl. No.: 13/194,677
Filed: Jul. 29, 2011
Prior Publication Data
US 2012/0230428 A1l Sep. 13,2012

Related U.S. Application Data

Continuation-in-part of application No. 13/045,442,
filed on Mar. 10, 2011, now abandoned, which is a
continuation-in-part of application No. 13/045,425,
filed on Mar. 10, 2011.

Int. Cl1.

HO4N 7/18 (2006.01)

HO4N 19/436 (2014.01)

HO4N 19/176 (2014.01)

HO4N 19/70 (2014.01)

HO4N 19/174 (2014.01)

HO4N 19/44 (2014.01)

U.S. CL

CPC HO4N 19/436 (2014.11); HO4N 19/174

(2014.11); HO4N 19/176 (2014.11); HO4N
19/44 (2014.11); HO4N 19/70 (2014.11)
Field of Classification Search
CPC .. HO4N 7/50; HO4N 7/26335; HO4N 7/26707
USPC 375/240.11-240.29
See application file for complete search history.

NO

132

ENTROPY_
SLICE_FLAG

(56) References Cited

U.S. PATENT DOCUMENTS

5,471,248
5,740,460
8,102,921
2004/0030665
2007/0257926
2012/0081241
2014/0241438

A * 11/1995
A * 4/1998
B2* 12012
Al 2/2004
Al 112007
Al 4/2012
Al 82014

Bhargava et al. 375/240.24
Wise et al. 348/473
Suhetal. ..occcoevnnnnnn 375/240.27
Sullivan

Deb

Misra et al.

Zhao et al.

FOREIGN PATENT DOCUMENTS

WO
WO

2009/119888 Al
2012/043883 Al

10/2009
4/2012

OTHER PUBLICATIONS

Misra, et al.; “Video Decoder Parallelization for Tiles”; U.S. Appl.

No. 14/279,726, filed May 16, 2014.
Misra, et al.; “Video Decoder Parallelization for Tiles”; U.S. Appl.
No. 14/279,741, filed May 16, 2014.

(Continued)

Primary Examiner — Andy Rao
(74) Attorney, Agent, or Firm — Keating & Bennett, LLP

(57) ABSTRACT

A method for decoding video includes receiving a frame of
the video that includes at least one slice and at least one tile.
Each of the at least one slice and the at least one tile are not all
aligned with one another. Each of the at least one slice is
characterized that it is decoded independently of the other the
at least one slice. Each of the at least one tile is characterized
that it is a rectangular region of the frame and having coding
units for the decoding arranged in a raster scan order. The at
least one tile of the frame are collectively arranged in a raster
scan order of the frame.

4 Claims, 21 Drawing Sheets

130

PARSE
ENTROPY-SLICE 148
HEADER

PARSE
REGULAR-SLICE
HEADER

I

RESET DECODER
STATE

|’\1u
13

3

RESETDECODER [459
STATE

I

I

DEFINE NEIGHBOR
INFORMATION FOR

AND
RECONSTRUCTION

ENTROPY DECODE
SLICE DATA

[ENTROPY DECODING|

DEFINE NEIGHBOR
INFORMATION FOR
ENTROPY
DECODING

DEFINE NEIGHBOR
INFORMATION

RECONSTRUCT
SLICE

US 9,325,999 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Misra, et al.; “Video Decoder Parallelization for Tiles”; U.S. Appl.
No. 14/279,745, filed May 16, 2014.

Fuldseth, “Replacing slices with tiles for high level parallelism,”
JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl 1, 4th
Meeting: Daegu, Korea, (Document No. JCTVC-D227), Jan. 20-28,
2011, 5 pgs.

Horowitz, “Generalized slices,” JCT-VC of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGll1, 4th Meeting: Daegu, Korea, (Docu-
ment No. JCTVC-D378), Jan. 20-28, 2011, 7 pgs.

Misra et al., “Entropy Slices for Parallel Entropy Coding,” JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 3rd Meeting:
Guangzhou, CN, (Document No. JCTVC-C256), Oct. 7-15, 2010, 6
pgs.

Wiegand et al., “WDI1: Working draft 1 of High-Efficiency Video
Coding,” JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGT11, 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010, 50 pgs.,
Partl.

Wiegand et al., “WDI1: Working draft 1 of High-Efficiency Video
Coding,” JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGT11, 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010, 50 pgs.,
Part2.

Wiegand et al., “WDI1: Working draft 1 of High-Efficiency Video
Coding,” JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGT11, 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010, 37 pgs.,
Part3.

Misra et al., “Tiles,” JCT-VC of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 5th Meeting: Geneva, CH, (Document No.
JCTVC-E412), Mar. 16-23, 2011, 4 pgs.

International Search Report, PCT International App. No. PCT/
JP2012/056786, by Sharp Kabushiki Kaisha, mailed May 22,2012, 5
pgs.

Misra et al., “New results for parallel decoding for Tiles,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3

and ISO/IEC JTC1/SC29/WG11—JCTVC-F594, 6th Meeting:
Torino, IT, Jul. 14-22, 2011, 6 pgs.

Fuldseth et al., “Tiles,” Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11—
JCTVC-F594, 5th Meeting: Geneva CH, Mar. 16-23, 2011, 14 pgs.

International Search Report, mailed Oct. 30,2012, PCT International
Patent App. No. PCT/JP2012/069924, Sharp Kabushiki Kaisha, 4
pgs.

Misraetal., “Video Decoder Parallelization for Tiles,” U.S. Appl. No.
13/180,419, filed Jul. 11, 2011.

Segall et al., “Video Decoder Parallelization Including a Bitstream
Signal,” U.S. Appl. No. 13/045,442, filed Mar. 10, 2011.

Segall et al., “Video Decoder Parallelization Including Slices,” U.S.
Appl. No. 13/045,425, filed Mar. 10, 2011.

Segall et al., “Video Decoder for Tiles,” U.S. Appl. No. 13/355,139,
filed Jan. 20, 2012.

Segall; “Video Decoder for Tiles”; U.S. Appl. No. 13/355,139, filed
Jan. 20, 2012.

Fuldseth, A. et al., “Tiles”, Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGll1,
JCTVC-E408_1l, 5th Meeting, Mar. 16-23, 2011, pp. 1-14.

Misra, K. et al., “Tiles for Parallel Decoding” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WGl1, JCTVC-E412, 5th Meeting, Mar. 16-23, 2011,
pp. 1-5.

Misra, K. et al., “Periodic Initialization for Wavefront Coding Func-
tionality”, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGL1, 4th Meeting, (Document No. JCTVC-D073), Jan. 20-28,
2011, 5 pgs.

Official Communication issued in corresponding European Patent
Application No. 12755140.6, mailed on Jul. 29, 2014.

Fuldseth et al., “Tiles”, Joint Collaborative Team on Video Coding of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-F335,
6th Meeting, Jul. 14-22, 2011, pp. 1-15.

* cited by examiner

US 9,325,999 B2

Sheet 1 of 21

Apr. 26,2016

U.S. Patent

Il '©OI4
14V HOIMd
IYNDIS
TVYNDIS a3LONYLSNODTY ge 9
8z + ze
(3ZILNYND/ATYOS v
/NHOISNVH L) / V@ \ > oz_mw%ﬂ-m_o
y ISHIANI 'S
0] P
0z
NOILOIa3yd zl -
B ¢ NOILOIaT4d
YY1NI JNVHS-VHLNI
Wv3HLslig 03alA
¥l ol
0e NOILOIa34d J)
VA NOILYSNIdINOD | S$34NLoId
ONIQOD d3LNI or NOILOW IONIYI4TY
Nm.\,n_oEzm NOILYIWHOSANI
ry ﬁ NOILLOW |-B¢
6l <
{ [NoLLYWILST | o
~ ~N NOILOW
TYNDIS ~
g3Lola3yd 8l
vz 9~ b
9z] o)
J 3ZINVND/ITVOS| o | /\+<VA IHNLOId
S1N3IDI44309 INHOASNYYL + 1NdNI
INHO4SNYHL
@3ZILNYND z

US 9,325,999 B2

Sheet 2 of 21

Apr. 26,2016

U.S. Patent

NOILOIaTud
TNV NOILVSNIdNOD [
89 09 NOILYWHOANI
AHOWIW 9. NOILOW
IRV fom
A
bo vouoang < Moudeme |
+ El}\2-E] 7
VHLNI
+ NOILVYINHOANI
oS Nzg ., NowoGaud
VYLNI | 4§
(3ZILNVNO/ATVYIS
¥3Ld < ONIGO23a IVNOIS
ONI¥O018-3a /INYOISNVL) AdO¥1INT y LNdNI
JISHIANI
08 Z9 vs zs
0S

U.S. Patent

Apr. 26,2016 Sheet 3 of 21 US 9,325,999 B2

90

100

—~—

SLICE #10 <k
92 | 93 I 101
94 | 95 I/
SLICE #1 96
i 28 .,/102
SLICE #2 29
PRIOR ART

FIG. 3

U.S. Patent Apr. 26,2016 Sheet 4 of 21 US 9,325,999 B2

//
SLICE GROUP #0) ry

92 § 93
4 |95 104

96 /

/]
105\ o 08 4
: SLICE GROUP #1
29
SLICE GROUP #2

PRIOR ART
FIG. 4

U.S. Patent

Apr. 26,2016

158

132

PARSE
REGULAR-SLICE
HEADER

US 9,325,999 B2

!

RESET DECODER
STATE

Sheet 5 of 21
|
ENTROPY _
SLICE_FLAG
146
PARSE
134 ENTROPY-SLICE [148
HEADER
136 RESET DECODER ;50

!

STATE

DEFINE NEIGHBOR

!

DEFINE NEIGHBOR

INFORMATION FOR | INFORMATION FOR —, .,
ENTROPY DECODING] 138 ENTROPY
AND DECODING
RECONSTRUCTION ¢
¢ ENTROPY P
ENTROPY DECODE |— DECODE SLICE 154
SLICE DATA 140 DATA
DEFINE NEIGHBOR
INFORMATION }—
FOR 156
RECONSTRUCTION
RECONSTRUCT [142
SLICE

FIG. 5

U.S. Patent

US 9,325,999 B2

Apr. 26,2016 Sheet 6 of 21
IDENTIFY N ENTROPY [170
SLICES OR START OF
NEXT PICTURE
e o ©
Y \
RESET DECODER (— ., RESET DECODER p—
STATE STATE 178
DEFINE NEIGHBOR | DEFINE NEIGHBOR |
INFORMATION FOR 174 INFORMATION FOR 180
ENTROPY DECODING ENTROPY DECODING
ENTROPY DECODE ENTROPY DECODE
1STENTROPY [176 NTH ENTROPY [182
SLICE DATA SLICE DATA
e o ©

RECONSTRUCT N SLICES 184

FIG. 6

T

US 9,325,999 B2

Sheet 7 of 21

Apr. 26,2016

U.S. Patent

L 'Old

9zL | szL | vzL R OCL | 6LL | SLL | ZLL | ObL [GLL § S0L | 201 | 90L | GOL | ¥OL

czL [2zL [z BpLL | €LL 2L | LLL [OLL [60L Q€OL | €OL | LOL | OOL | 66

86 | /6| 96 19 | 09| 65 | 8¢
G6 | ¥6 | ¢ 9G | ¢S ¥s | €5
SIIHYANNOd
Mo ¢6 | L6 | 06 16 | 0 | e | 8F
68 | 88 | :8 oy | sv | v | €F
zv | w | or vl et |2 | L

6¢ | 8¢ A ¢ | 9¢ | ¢ ve | €¢ 44 0l 6 8 L 9

9¢ Ge | v€ l¢ | 0C 6L | 8L | 41 9l g 14 € [I

S3-vanNnogd
NWNT02

US 9,325,999 B2

Sheet 8 of 21

Apr. 26,2016

U.S. Patent

8 'Old
€ 321718
|
9cl | G2l | vzu 66 | 86 L6 | 96 S6 | ¥6 £6 9t ge | ve €e
€cl | ¢cl | 1cL | ¢6 l6 | 06 68 | 88 18 98 ce L€ 0¢ 6¢
0cL | 6LL | 8LL | G8 12°] €8 c8 18 | 08 6. 8¢ g | 9¢ | S¢
ZLL 1 9LL | GLL Y 8L | 4L 9. 7 vL | €4 ¢l ve | €¢ Zc 74
vLL | €LL | CLI VL 0L | 69 | 89 49 | 99 g9 0c | 61 8L | LI
LLL | oLl | 60L Qg V9 | €9 c9 19 09 | 69 8G § 91 1 vh | ¢l
80L | Z0L | 90l § 4G 9G | 99 PG | €9 ¢S LG cl L ol 6
GoL | vOL | €0 | 0S 6y | 8v | Lv | 9V 117 144 8 L 9 S
¢0L | 1Ol | OOl | ¢t A4 iV | OF | 6€ g8e | L€ v € 4 l
S3AIVANNO4
NIWNT0D

=€ 30118

=~ 30018

=1 301718

U.S. Patent Apr. 26,2016 Sheet 9 of 21 US 9,325,999 B2

Y

NUMBER OF
COLUMNS INA | —
TILE>0?

NUMBER OF

ROWS INA e
TILE>07?

IS CABAC
USED FOR
ENTROPY
CODING ?

FIG. 9A

Y

RECEIVE
ENTROPY
INITIALIZATION i
METHOD FOR
TILES IN SLICE

U.S. Patent Apr. 26, 2016 Sheet 10 of 21 US 9,325,999 B2

'

TILES N
ENABLED?

IS CABAC USED N

FOR ENTROPY —
CODING?

Y FIG. 9B

RECEIVE ENTROPY
INITIALIZATION
METHOD FOR
TILES IN SLICES

U.S. Patent Apr. 26, 2016 Sheet 11 of 21 US 9,325,999 B2

'

FIRST MACROBLOCK N
IN TILE?

I
NOT FIRST MACROBLOCK IN N
THE SLICE?

I

DOES ENTROPY
INITIALIZATION METHOD N
FOR TILE COMMUNICATE p———=ypp

INFORMATION IN FIG' 1 OA

MACROBLOCK?

I

RECEIVE ENTROPY
INFORMATION FOR
TILE

l

U.S. Patent Apr. 26, 2016 Sheet 12 of 21 US 9,325,999 B2

IS ENTROPY INITIALIZATION
INDICATOR VALUE
PRESENT?

READ ENTROPY SET ENTROPY

INITIALIZATION INITIALIZATION
INDICATOR VALUE INDEX VALUE TO
PREVIOUS VALUE

INITIALIZE ENTROPY CODE STATE
WITH VALUES SIGNALED WITH
ENTROPY INITIALIZATION
INDICATOR VALUE

RECEIVE ENTROPY
INFORMATION FOR TILE

FIG. 10B

U.S. Patent Apr. 26, 2016 Sheet 13 of 21 US 9,325,999 B2

BLOCK-CODING UNIT HEADER

SLICE HEADER

TILE HEADER

IS TILE FLAG SET? —

NUMBER OF TILES

LOCATION OF TILE

DISTANCE INFORMATION

Fig. 11

U.S. Patent Apr. 26, 2016 Sheet 14 of 21 US 9,325,999 B2

slice_header() { C Descriptor
first Ictb 1in slice 2 | ue(v)
lightweight slice flag 2 [u(l)
if(! lightweight slice flag) {
slice type 2 |ue(v)
pic_paramcter sct id 2 |uc(v)
Frame num 2 |u(v)
if(IdrPicFlag)
idr_pic_id 2 | ue(v)
pic_order cnt Isb 2 | uv)
if(slice type ==P ||slice type == B) {
Num_ref idx_active override flag 2 |u)
if(num_ref idx active override flag) {
num ref idx 10 active minusl 2 |ue(v)
If(slice type ==B)
num ref idx 11 active minusl 2 | ue(v)
¢
t
if(nal ref idc !=0)
Dec ref pic marking() 2
if{ entropy coding mode flag && slice type !=1)
cabac init idc 2 |ue(v)
slice gp delta 2 | se(v)
alf param()
if(slice type==P||slice type == B){
mc_interpolation_idc 2 |ue(v)
mv_competition flag 2 |u()
il (mv_competilion [lag) {
mv_compctition tcmporal flag 2 |u(l)
}
t
if (slice type == B && mv competition flag)
collocated from 10 flag 2 lu)
!
else {
if(entropy_coding mode flag && slice type != 1)
cabac_inil idc 2 | ue(v)
t

FIG. 12A

U.S. Patent Apr. 26,2016 Sheet 15 of 21 US 9,325,999 B2
slice_header() { Descriptor
first Ictb in slice ue(v)
lightweight slice flag u(l)
if(! lightweight slice flag) {
slice type ue(v)
pic_paramcter sct id uc(v)
Framc num uv)
i[(IdrPicFlag)
idr_pic id ue(v)
pic_order cnt Isb u(v)
if(slice type ==P||slice type == B) {
Num ref idx_active override flag u(l)
if(num_ref idx_active override flag) {
num ref idx 10 active minusl ue(v)
If(slice type == B)
num ref idx 11 active minusl ue(v)
;
t
if{ nal ref idc!1=0)
Dcc ref pic_marking()
if{_ entropy coding mode flag && slice type !=1)
cabac inil idc ue(v)
slice qp delta se(v)
alf param()
if(slice type == P||slice type == B) {
mc _interpolation idc ue(v)
mv_competition flag u(1)
if (mv_competition flag) {
mv_competition temporal flag u(l)
;
;
if (slice type ==B && mv _competition flag)
collocated from 10 flag u(l)
h
clse {
il{ entropy coding mode (lag && slice type = 1)
cabac init idc ue(v)
slice gp delta
T
)]

FIG. 12B

U.S. Patent Apr. 26, 2016 Sheet 16 of 21 US 9,325,999 B2

BEGIN

_— 300

Tileldx=0 350
PreviousLocation=0
TileCount=(num_columns_minus1+1)*
(num_rows_minus1+1)

PreviousLocation=CurrentLocation
PreviousTileSize=CurrentTileSize
Tileldx=Tileldx+1

/-310

340

TileDifferentialOffset[Tileldx]=CurrentTileSize-
PreviousTileSize

WRITE TILE DATA

320

IS THERE
ANGTHER TILE TO
BE WRITTEN?

— 330

CurrentTileSize=CurrentLocation-
PreviousLocation

NO
— 385

L 370

TileLocationInformationFlag=.T.

380

Write TileLocationInformationPresentFlag,
TileDifferentialOffset[0],
TileDifferential Offset[1], ...
TileDifferentialOffset{NumberOfTilesMinus1-1]

END —

FIG. 13

U.S. Patent Apr. 26,2016 Sheet 17 of 21 US 9,325,999 B2

BEGIN

J ya 400

Tileldx=0
PreviousLocation=0
PreviousTileSize=0

l /410

WRITE TILE DATA

425
r

WRITE MARKERS (E.G., START CODE AND
LIGHT WEIGHT TILE HEADER)

IS THERE
ANOTHER TILE TO
BE WRITTEN

YES

END

FIG. 14

U.S. Patent Apr. 26, 2016 Sheet 18 of 21 US 9,325,999 B2

TILE HEADER

14

FIG. 15

SliceParameterSet0
QP, cabac_init_idc,
reference picture list
modifications, loop
filter information

SliceParameterSet1
QP, cabac _init_idc,
reference picture list
modifications, loop
filter information

FIG. 16

U.S. Patent Apr. 26, 2016 Sheet 19 of 21 US 9,325,999 B2

BITSTREAM

B EndOfTileFlag

A

noaonnnnn
S wmens (R evoms
DEOEDraED

EOoEEnEnn
DOEmEDEnD

BES|

FIG. 17

US 9,325,999 B2

Sheet 20 of 21

Apr. 26,2016

U.S. Patent

payoeal Juswubije-a)Aq (|1} ped
-0197 pue JTIAVO/OVAVO Sjeulllis] sa1Aq 4O SHUN S|

Jepeay 99l|s Ul paiols
uonewIoLUl UoNesaT

alay ‘pbay
Buipped

ON |_

% § Sl |

- AR AR ANAN AR W
TS

- i PR

noldx3

wea.slig

N
o

8L 'Old

payoead Juswiubije-aiAq |} ped
0197 pue JTAVO/OVEVD Bjeullis] g

Jepesy

US 9,325,999 B2

Sheet 21 of 21

Apr. 26,2016

U.S. Patent

alay ‘pbay
Buipped
ON

weasig

61 Old

pondu|

% I* 3|13 Jybrom 1ybI

|||||

ot

US 9,325,999 B2

1
VIDEO DECODER FOR SLICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser. No. 13/045,442, filed Mar. 10, 2011, which
application is a continuation-in-part of U.S. patent Ser. No.
13/045,425, filed Mar. 10, 2011.

BACKGROUND OF THE INVENTION

The present invention relates to video encoding and decod-
ing.

Digital video is typically represented as a series of images
or frames, each of which contains an array of pixels. Each
pixel includes information, such as intensity and/or color
information. In many cases, each pixel is represented as a set
of three colors, each of which is defined by eight bit color
values.

Video-coding techniques, for example H.264/MPEG-4
AVC (H.264/AVC), typically provide higher coding effi-
ciency at the expense of increasing complexity. Increasing
image quality requirements and increasing image resolution
requirements for video coding techniques also increase the
coding complexity. Video decoders that are suitable for par-
allel decoding may improve the speed of the decoding process
and reduce memory requirements; video encoders that are
suitable for parallel encoding may improve the speed of the
encoding process and reduce memory requirements.

H.264/MPEG-4 AVC [Joint Video Team of ITU-T VCEG
and ISO/IEC MPEG, “H.264: Advanced video coding for
generic audiovisual services,” ITU-T Rec. H.264 and ISO/
IEC 14496-10 (MPEG4—Part 10), November 2007], and
similarly the JCT-VC, [“Draft Test Model Under Consider-
ation”, JCTVC-A205, JCT-VC Meeting, Dresden, April 2010
(ICT-VO)], both of which are incorporated by reference
herein in their entirety, are video codec (encoder/decoder)
specifications that use macroblock prediction followed by
residual coding to reduce temporal and spatial redundancy in
a video sequence for compression efficiency.

The foregoing and other objectives, features, and advan-
tages of the invention will be more readily understood upon
consideration of the following detailed description of the
invention, taken in conjunction with the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a H.264/AVC video encoder.

FIG. 2 illustrates a H.264/AVC video decoder.

FIG. 3 illustrates an exemplary slice structure.

FIG. 4 illustrates another exemplary slice structure.

FIG. 5 illustrates reconstruction of an entropy slice.

FIG. 6 illustrates parallel reconstruction of an entropy
slice.

FIG. 7 illustrates a frame with a slice and 9 tiles.

FIG. 8 illustrates a frame with three slices and 3 tiles.

FIGS. 9A and 9B illustrate entropy selection for a tile.

FIGS. 10A and 10B illustrates another entropy selection
for a tile.

FIG. 11 illustrates yet another entropy selection for a tile.

FIGS. 12A and 12B illustrates exemplary syntax.

FIG. 13 illustrates an explicit signal for the start of a tile.

FIG. 14 illustrates an implicit signal for the start of a tile.

FIG. 15 illustrates a set of light weight tile headers.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 16 illustrates sets of slice parameter index sets.
FIG. 17 illustrates end of tile flags.

FIG. 18 illustrates an explicit byte alignment technique.
FIG. 19 illustrates an implicit byte alignment technique.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

While any video coder/decoder (codec) that uses entropy
encoding/decoding may be accommodated by embodiments
described herein, exemplary embodiments are described in
relation to an H.264/AVC encoder and an H.264/AVC
decoder merely for purposes of illustration. Many video cod-
ing techniques are based on a block-based hybrid video-
coding approach, wherein the source-coding technique is a
hybrid of inter-picture, also considered inter-frame, predic-
tion, intra-picture, also considered intra-frame, prediction
and transform coding of a prediction residual. Inter-frame
prediction may exploit temporal redundancies, and intra-
frame and transform coding of the prediction residual may
exploit spatial redundancies.

FIG. 1 illustrates an exemplary H.264/AVC video encoder
2. An input picture 4, also considered a frame, may be pre-
sented for encoding. A predicted signal 66 and a residual
signal 8 may be produced, wherein the predicted signal 6 may
be based on either an inter-frame prediction 10 or an intra-
frame prediction 12. The inter-frame prediction 10 may be
determined by motion compensating 14 one or more stored,
reference pictures 16, also considered reference frames, using
motion information 19 determined by a motion estimation 18
process between the input frame 4 and the reference frames
16. The intra-frame prediction 12 may be determined 20
using a decoded signal 22. The residual signal 8 may be
determined by subtracting the input frame 4 from the pre-
dicted signal 6. The residual signal 8 is transformed, scaled
and quantized 24, thereby producing quantized, transform
coefficients 26. The decoded signal 22 may be generated by
adding the predicted signal 6 to a signal 28 generated by
inverse transforming, scaling and inverse quantizing 30 the
quantized, transform coefficients 26. The motion information
19 and the quantized, transform coefficients 26 may be
entropy coded 32 and written to the compressed-video bit-
stream 34. An output image region 38, for example a portion
of the reference frame, may be generated at the encoder 2 by
filtering 36 the reconstructed, pre-filtered signal 22. This
output frame may be used as a reference frame for the encod-
ing of subsequent input pictures.

FIG. 2 illustrates an exemplary H.264/AVC video decoder
50. An input signal 52, also considered a bitstream, may be
presented for decoding. Received symbols may be entropy
decoded 54, thereby producing motion information 56, intra-
prediction information 57, and quantized, scaled, transform
coefficients 58. The motion information 56 may be combined
60 with a portion of one or more reference frames 62 which
may reside in frame memory 64, and an inter-frame predic-
tion 68 may be generated. The quantized, scaled, transform
coefficients 58 may be inverse quantized, scaled and inverse
transformed, thereby producing a decoded residual signal 70.
The residual signal 70 may be added to a prediction signal:
either the inter-frame prediction signal 68 or an intra-frame
prediction signal 76. The intra-frame prediction information
may be combined 74 with previously decoded information in
the current frame 72, and an intra-frame prediction 74 may be
generated. The combined signal 72 may be filtered 80 and the
filtered signal 82 may be written to frame memory 64.

In H.264/AVC, an input picture may be partitioned into
fixed-size macroblocks, wherein each macroblock covers a

US 9,325,999 B2

3

rectangular picture area of 16x16 samples of the luma com-
ponent and 8x8 samples of each of the two chroma compo-
nents. The decoding process of the H.264/AVC standard is
specified for processing units which are macroblocks. The
entropy decoder 54 parses the syntax elements of the com-
pressed-video bitstream 52 and de-multiplexes them. H.264/
AVC specifies two alternative methods of entropy decoding:
a low-complexity technique that is based on the usage of
context-adaptively switched sets of variable length codes,
referred to as CAVLC, and the computationally more
demanding technique of context-based adaptively binary
arithmetic coding, referred to as CABAC. In both such
entropy decoding techniques, decoding of a current symbol
may rely on previously, correctly decoded symbols and adap-
tively updated context models. In addition, different data
information, for example, prediction data information,
residual data information and different color planes, may be
multiplexed together. De-multiplexing may wait until ele-
ments are entropy decoded.

After entropy decoding, a macroblock may be recon-
structed by obtaining: the residual signal through inverse
quantization and the inverse transform, and the prediction
signal, either the intra-frame prediction signal or the inter-
frame prediction signal. Blocking distortion may be reduced
by applying a de-blocking filter to decoded macroblocks.
Typically, such subsequent processing begins after the input
signal is entropy decoded, thereby resulting in entropy decod-
ing as a potential bottleneck in decoding. Similarly, in codecs
in which alternative prediction mechanisms are used, for
example, inter-layer prediction in H.264/AVC or inter-layer
prediction in other scalable codecs, entropy decoding may be
requisite prior to processing at the decoder, thereby making
entropy decoding a potential bottleneck.

An input picture comprising a plurality of macroblocks
may be partitioned into one or several slices. The values of the
samples in the area of the picture that a slice represents may
be properly decoded without the use of data from other slices
provided that the reference pictures used at the encoder and
the decoder are the same and that de-blocking filtering does
not use information across slice boundaries. Therefore,
entropy decoding and macroblock reconstruction for a slice
does not depend on other slices. In particular, the entropy
coding state may be reset at the start of each slice. The data in
other slices may be marked as unavailable when defining
neighborhood availability for both entropy decoding and
reconstruction. The slices may be entropy decoded and recon-
structed in parallel. No intra prediction and motion-vector
prediction is preferably allowed across the boundary of a
slice. In contrast, de-blocking filtering may use information
across slice boundaries.

FIG. 3 illustrates an exemplary video picture 90 compris-
ing eleven macroblocks in the horizontal direction and nine
macroblocks in the vertical direction (nine exemplary mac-
roblocks labeled 91-99). FIG. 3 illustrates three exemplary
slices: a first slice denoted “SLICE #0 100, a second slice
denoted “SLICE #1” 101 and a third slice denoted “SLICE
#27102. An H.264/AVC decoder may decode and reconstruct
the three slices 100, 101, 102 in parallel. Each of the slides
may be transmitted in scan line order in a sequential manner
At the beginning of the decoding/reconstruction process for
each slice, context models are initialized or reset and mac-
roblocks in other slices are marked as unavailable for both
entropy decoding and macroblock reconstruction. Thus, for a
macroblock, for example, the macroblock labeled 93, in
“SLICE #1,” macroblocks (for example, macroblocks labeled
91 and 92) in “SLICE #0”” may not be used for context model
selection or reconstruction. Whereas, for a macroblock, for

10

15

20

25

30

35

40

45

50

55

60

65

4

example, the macroblock labeled 95, in “SLICE #1,” other
macroblocks (for example, macroblocks labeled 93 and 94) in
“SLICE #1” may be used for context model selection or
reconstruction. Therefore, entropy decoding and macroblock
reconstruction proceeds serially within a slice. Unless slices
are defined using a flexible macroblock ordering (FMO),
macroblocks within a slice are processed in the order of a
raster scan.

Flexible macroblock ordering defines a slice group to
modify how a picture is partitioned into slices. The macrob-
locks in a slice group are defined by a macroblock-to-slice-
group map, which is signaled by the content of the picture
parameter set and additional information in the slice headers.
The macroblock-to-slice-group map consists of a slice-group
identification number for each macroblock in the picture. The
slice-group identification number specifies to which slice
group the associated macroblock belongs. Each slice group
may be partitioned into one or more slices, wherein a slice is
a sequence of macroblocks within the same slice group that is
processed in the order of a raster scan within the set of mac-
roblocks of a particular slice group. Entropy decoding and
macroblock reconstruction proceeds serially within a slice
group.

FIG. 4 depicts an exemplary macroblock allocation into
three slice groups: a first slice group denoted “SLICE
GROUP #0” 103, a second slice group denoted “SLICE
GROUP #1” 104 and a third slice group denoted “SLICE
GROUP #2” 105. These slice groups 103, 104, 105 may be
associated with two foreground regions and a background
region, respectively, in the picture 90.

A picture may be partitioned into one or more reconstruc-
tion slices, wherein a reconstruction slice may be self-con-
tained in the respect that values of the samples in the area of
the picture that the reconstruction slice represents may be
correctly reconstructed without use of data from other recon-
struction slices, provided that the references pictures used are
identical at the encoder and the decoder. All reconstructed
macroblocks within a reconstruction slice may be available in
the neighborhood definition for reconstruction.

A reconstruction slice may be partitioned into more than
one entropy slice, wherein an entropy slice may be self-
contained in the respect that symbol values in the area of the
picture that the entropy slice represents may be correctly
entropy decoded without the use of data from other entropy
slices. The entropy coding state may be reset at the decoding
start of each entropy slice. The data in other entropy slices
may be marked as unavailable when defining neighborhood
availability for entropy decoding. Macroblocks in other
entropy slices may not be used in a current block’s context
model selection. The context models may be updated only
within an entropy slice. Accordingly, each entropy decoder
associated with an entropy slice may maintain its own set of
context models.

An encoder may determine whether or not to partition a
reconstruction slice into entropy slices, and the encoder may
signal the decision in the bitstream. The signal may comprise
an entropy-slice flag, which may be denoted “entropy_
slice_flag”. Referring to FIG. 5, an entropy-slice flag may be
examined 130, and if the entropy-slice flag indicates that
there are no 132 entropy slices associated with a picture, or a
reconstruction slice, then the header may be parsed 134 as a
regular slice header. The entropy decoder state may be reset
136, and the neighbor information for the entropy decoding
and the reconstruction may be defined 138. The slice data may
then be entropy decoded 140, and the slice may be recon-
structed 142. If the entropy-slice flag indicates there are 146
entropy slices associated with a picture, or a reconstruction

US 9,325,999 B2

5

slice, then the header may be parsed 148 as an entropy-slice
header. The entropy decoder state may be reset 150, the
neighbor information for entropy decoding may be defined
152 and the entropy-slice data may be entropy decoded 154.
The neighbor information for reconstruction may then be
defined 156, and the slice may be reconstructed 142. After
slice reconstruction 142, the next slice, or picture, may be
examined 158.

Referring to FIG. 6, the decoder may be capable of parallel
decoding and may define its own degree of parallelism, for
example, consider a decoder comprising the capability of
decoding N entropy slices in parallel. The decoder may iden-
tify 170 N entropy slices. If fewer than N entropy slices are
available in the current picture, or reconstruction slice, the
decoder may decode entropy slices from subsequent pictures,
or reconstruction slices, if they are available. Alternatively,
the decoder may wait until the current picture, or reconstruc-
tion slice, is completely processed before decoding portions
of a subsequent picture, or reconstruction slice. After identi-
fying 170 up to N entropy slices, each of the identified entropy
slices may be independently entropy decoded. A first entropy
slice may be decoded 172-176. The decoding 172-176 of the
first entropy slice may comprise resetting the decoder state
172. If CABAC entropy decoding is used, the CABAC state
may be reset. The neighbor information for the entropy
decoding of'the first entropy slice may be defined 174, and the
first entropy slice data may be decoded 176. For each ofthe up
to N entropy slices, these steps may be performed (178-182
for the Nth entropy slice). The decoder may reconstruct 184
the entropy slices when all, or a portion of, the entropy slices
are entropy decoded.

When there are more than N entropy slices, a decode thread
may begin entropy decoding a next entropy slice upon the
completion of entropy decoding of an entropy slice. Thus
when a thread finishes entropy decoding a low complexity
entropy slice, the thread may commence decoding additional
entropy slices without waiting for other threads to finish their
decoding.

The arrangement of slices, as illustrated in FIG. 3, may be
limited to defining each slice between a pair of macroblocks
in the image scan order, also known as raster scan or a raster
scan order. This arrangement of scan order slices is compu-
tationally efficient but does not tend to lend itself'to the highly
efficient parallel encoding and decoding. Moreover, this scan
order definition of slices also does not tend to group smaller
localized regions of the image together that are likely to have
common characteristics highly suitable for coding efficiency.
The arrangement of slices, as illustrated in FIG. 4, is highly
flexible in its arrangement but does not tend to lend itself to
high efficient parallel encoding or decoding. Moreover, this
highly flexible definition of slices is computationally com-
plex to implement in a decoder.

Referring to FIG. 7, a tile technique divides an image into
a set of rectangular (inclusive of square) regions. The mac-
roblocks (e.g., largest coding units) within each of the tiles are
encoded and decoded in a raster scan order. The arrangement
of tiles are likewise encoded and decoded in a raster scan
order. Accordingly, there may be any suitable number of
column boundaries (e.g., O or more) and there may be any
suitable number of row boundaries (e.g., 0 or more). Thus, the
frame may define one or more slices, such as the one slice
illustrated in FIG. 7. In some embodiments, macroblocks
located in different tiles are not available for intra-prediction,
motion compensation, entropy coding context selection or
other processes that rely on neighboring macroblock infor-
mation.

10

15

20

25

30

35

40

45

50

55

60

65

6

Referring to FIG. 8, the tile technique is shown dividing an
image into a set of three rectangular columns. The macrob-
locks (e.g., largest coding units) within each of the tiles are
encoded and decoded in a raster scan order. The tiles are
likewise encoded and decoded in a raster scan order. One or
more slices may be defined in the scan order of the tiles. Each
of'the slices are independently decodable. For example, slice
1 may be defined as including macroblocks 1-9, slice 2 may
be defined as including macroblocks 10-28, and slice 3 may
be defined as including macroblocks 29-126 which spans
three tiles. The use of tiles facilitates coding efficiency by
processing data in more localized regions of a frame.

In one embodiment, the entropy encoding and decoding
process is initialized at the beginning of each tile. At the
encoder, this initialization may include the process of writing
remaining information in the entropy encoder to the bit-
stream, a process known as flushing, padding the bit-stream
with additional data to reach one of a pre-defined set of
bit-stream positions, and setting the entropy encoder to a
known state that is pre-defined or known to both the encoder
and decoder. Frequently, the known state is in the form of a
matrix of values. Additionally, a pre-defined bit-stream loca-
tion may be a position that is aligned with a multiple number
of bits, e.g. byte aligned. At the decoder, this initialization
process may include the process of setting the entropy
decoder to aknown state that is known to both the encoder and
decoder and ignoring bits in the bit-stream until reading from
a pre-defined set of bit-stream positions.

In some embodiments, multiple known states are available
to the encoder and decoder and may be used for initializing
the entropy encoding and/or decoding processes. Tradition-
ally, the known state to be used for initialization is signaled in
a slice header with an entropy initialization indicator value.
With the tile technique illustrated in FIG. 7 and FIG. 8, tiles
and slices are not aligned with one another. Thus, with the
tiles and slices not being aligned, there would not tradition-
ally be an entropy initialization indicator value transmitted
for tiles that do not contain a first macro-block in raster scan
order that is co-located with the first macroblock in a slice.
For example referring to FIG. 7, macroblock 1 is initialized
using the entropy initialization indicator value that is trans-
mitted in the slice header but there is no similar entropy
initialization indicator value for macroblock 16 of the next
tile. Similar entropy initialization indicator information is not
typically present for macroblocks 34, 43, 63, 87, 99, 109, and
121 for the corresponding tiles for the single slice (which has
a slice header for macroblock 1).

Referring to FIG. 8, in a similar manner for the three slices,
an entropy initialization indicator value is provided in the
slice headers for macroblock 1 of slice 1, provided in the slice
header for macroblock 10 of slice 2, and provided in the slice
header for macroblock 29 of slice 3. However, in a manner
similar to FIG. 7, there lacks an entropy initialization indica-
tor value for the central tile (starting with macroblock 37) and
the right hand tile (starting with macroblock 100). Without
the entropy initialization indicator value for the middle and
right hand tiles, it is problematic to efficiently encode and
decode the macroblocks of the tiles in a parallel fashion and
with high coding efficiency.

For systems using one or more tiles and one or more slices
in a frame, it is preferable to provide the entropy initialization
indicator value together with the first macroblock (e.g., larg-
est coding unit) of a tile. For example, together with macrob-
lock 16 of FIG. 7, the entropy initialization indicator value is
provided to explicitly select the entropy initialization infor-
mation. The explicit determination may use any suitable tech-
nique, such as for example, indicate that a previous entropy

US 9,325,999 B2

7

initialization indicator value should be used, such as that in a
previous slice header, or otherwise send the entropy initial-
ization indicator value associated with the respective macrob-
lock/tile. In this manner, while the slices may include a header
that includes an entropy index value, the first macroblock in a
tile may likewise include an entropy initialization indicator
value.

Referring to FIG. 9A, the encoding of this additional infor-
mation may be as follows:

If (num_column_minus1>0 && num_rows_minl>0) then

tile_cabac_init_idc_present_flag

num_column_minus1>0 determines if the number of col-
umns in a tile is not zero and num_rows_min1>0 determines
if the number of rows in a tile is not zero, which both effec-
tively determine iftiles are being used in the encoding/decod-
ing. Iftiles are being used, then the tile_cabac_init_idc_pre-
sent_flag is a flag indicating how the entropy initialization
indicator values are communicated from an encoder to a
decoder. For example, if the flag is set to a first value then a
first option may be selected such as using a previously com-
municated entropy initialization indicator value. As a specific
example, this previously communicated entropy initialization
indicator value may be equal to the entropy initialization
indicator value transmitted in the slice header corresponding
to the slice containing the first macroblock of the tile. For
example, if the flag is set to a second value then a second
option may be selected such as the entropy initialization
indicator value is being provided in the bitstream for the
corresponding tile. As a specific example, the entropy initial-
ization indicator value is provided within in the data corre-
sponding to the first macro-block of the tile.

The syntax for signaling the flag indication how the
entropy initialization indicator values are communicated
from an encoder to a decoder may be as follows:

num_columns_minusl
num_rows_minusl
if (num_column_minus1>0 && num_rows_minus1>0 {
tile_boundary_dependence_idr
uniform_spacing_idr
if(uniform_spacing_idr =1) {
for (i=0; i<num_columns_minusl; i++)
columnWidth[i]
for (i=0; i<num_rows_minus1; i++)
rowHeight[i]

if{ entropy_coding mode==1)
tile_cabac_init_idc_present flag

Referring to FIG. 9B, other techniques may be used to
determine if tiles are being used, such as including a flagin a
sequence parameter set (e.g., information regarding a
sequence of frames) and/or a picture parameter set (e.g.,
information regarding a particular frame).

The syntax may be as follows:

tile_enable_flag
if (tile_enable_flag) {
num_columns_minusl
num_rows_minus1
tile_boundary_dependence_idr
uniform_spacing_idr
if(uniform_spacing_idr !=1) {
for (i=0; i<num_columns_minusl; i++)
columnWidth[i]
for (i=0; i<num_rows_minusl; i++)
rowHeight[i]

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

if{ entropy_coding mode==1)
tile_cabac_init_idc_present flag

tile_enable_flag determines if tiles are used in the current
picture.

Referring to FIGS. 10A and 10B, a technique to provide a
suitable entropy initialization indicator value information for
a tile may be as follows.

First, check to see if the macroblock (e.g., coding unit) is
the first macroblock in a tile. Thus, the technique determines
the first macroblock of a tile that may include an entropy
initialization indicator value. Referring to FIG. 7, this refers
to macroblocks 1, 16, 34, 43, 63, 87, 99, 109, and 121.
Referring to FIG. 8, this refers to macroblocks 1, 37, and 100.

Second, check to see if the first macroblock (e.g., coding
unit) of the tile is not the first macroblock (e.g., coding unit)
of the slice. Thus, the technique identifies additional tiles
within the slice. Referring to FIG. 7, this refers to macrob-
locks 16, 34, 43, 3, 87,99, 109, and 121. Referring to FIG. 8,
this refers to macroblocks 37 and 100.

Third, check to see if the tile_cabac_init_idc_flag is equal
to a first value and if tiles are enabled. In one specific embodi-
ment, this value is equal to 0. In a second embodiment, this
value is equal to 1. In an additional embodiment, tiles are
enabled when (num_column_minl>0 && num_rows_
minl>0). In another embodiment, tiles are enabled when
tile_enable flag equal to 1.

For such identified macroblocks the cabac_init_idc_pre-
sent_flag may be set.

Then the system may only signal cabac_init_idc_flag if
tile_cabac_init_idc_flag is present and if (num_column_mi-
nus1>0 && num_rows_minl>0). Thus, the system only
sends the entropy information if tiles are being used and the
flag indicates the entropy information is being sent (i.e.,
cabac_init_idc flag).

The coding syntax may be as follows:

coding_unit (x0, y0, currCodingUnitSize) {
If (xO==tile_row_start location &&
yO=tile_col_start_location
&& currCodingUnitSize==MaxCodingUnitSize &&
tile_cabac_init_idc_flag==true && mb_id!=first mb_in_slice {
cabac_init_idc_present_flag
if (cabac_init_idc_present_flag)
cabac_init_idc

a regular coding unit...

In general, one or more flag(s) associated with the first
macroblock (e.g., coding unit) of a tile not associated with the
first macroblock of a slice may define an entropy initialization
indicator value. A flag may indicate whether the entropy
initialization indicator value is previously provided informa-
tion, a default value, or otherwise entropy initialization indi-
cator value to be provided.

Referring again to FIG. 7, the decoder knows the location
of macroblock 16 in the picture frame but due to entropy
encoding is not aware of the positions of bits describing
macroblock 16 in the bitstream until macroblock 15 is
entropy decoded. This manner of decoding and identifying
the next macroblock maintains a low bit overhead, which is
desirable. However, it does not facilitate tiles to be decoded in
parallel. To increase the ability to identify a specific position

US 9,325,999 B2

9

in the bit-stream for a specific tile in a frame, so that the
different tiles may be simultaneously decoded in parallel in
the decoder without waiting for completion of the entropy
decoding, a signal may be included in the bitstream identify-
ing the location oftiles in the bit-stream. Referring to FIG. 11,
the signaling of the location of'tiles in the bit-stream is pref-
erably provided in the header of a slice. If a flag indicates that
the location of tiles in the bitstream is transmitted within the
slice, then in addition to the location within the slice of the
first macroblock of each of the tile(s) within the slice it also
preferably includes the number of such tiles within the frame.
Further, the location information may be included for only a
selected set of tiles, if desired.
The coding syntax may be as follows:

tile_locations_flag
if (tile_location_flag) {
tile_locations()

tile_locations()

for (i=0; i<num_of tiles_minusl; i++) {
tile_offset[i]

tile_locations_flag signals if the tile locations are transmit-
ted in the bitstream. The tile_offset[i] may be signaled using
absolute location values or differential size values (change in
tile size with respect to previously coded tile) or any suitable
technique.

While this technique has low overhead, the encoder can not
generally transmit the bit stream until all the tiles are encoded.

In some embodiments it is desirable to include data related
to the largest absolute location value or largest differential
size value, also considered a largest value, of sequential tiles.
With such information, the encoder can transmit only the
number of bits necessary to support the identified largest
value; the decoder can receive only the number of bits nec-
essary to support the identified largest value. For example,
with a relatively small largest value only a small bit depth is
necessary for the tile location information. For example, with
a relatively large largest value, a large bit depth is necessary
for the tile location information.

As another technique to increase the ability to identify
different tiles, so that the different tiles may be processed in
parallel in the decoder without waiting for the entropy decod-
ing, markers within the bitstream associated with the start of
each tile may be used. These tile markers are included within
the bitstream in such a manner that they can be identified
without entropy decoding of that particular portion of the
bitstream. In one embodiment the marker may begin with
0x000001, in another embodiment the marker may begin with
0x000002, in another embodiment the marker may begin with
0x000004, or any other suitable sequence of bits. Further-
more, the marker may include additional headers associated
with a tile and/or the first macroblock of the tile. In this
manner the encoder can write each tile to the bitstream after it
is encoded without waiting until all the tiles are encoded,
although the bit rate is increased as a result. In addition, the
decoder can parse the bitstream to identify the different tiles
in a more efficient manner, especially when used in conjunc-
tion with buffering.

The tile headers may be similar to the slice headers,
although less information is typically included. The principal
information required is the macroblock number of the next
block and entropy initialization data and slice index (indicat-

10

15

20

25

30

35

40

45

50

55

60

65

10

ing, to which slice the starting CU in the tile belongs). The
coding syntax of such a tile header may be as illustrated in
FIG. 12A. Alternatively, the principal information may also
include the initial quantization parameter. The coding syntax
of'such a tile header may be as illustrated in FIG. 12B. Values
that is not transmitted in the slice header and not in the tile
header may be reset to the values transmitted in the slice
header.

In some embodiments, markers are included in the bit-
stream and associated with the start of a tile. However, mark-
ers may not be included for every tile in the bitstream. This
facilitates an encoder and decoder to operate a different levels
of parallelism. For example, an encoder could use 64 tiles
while only including 4 markers in the bitstream. This enables
parallel encoding with 64 processes and parallel decoding
with 4 processes. In some embodiments, the number of mark-
ers in the bitstream is specified in a manner known both to the
encoder and decoder. For example, the number of markers
may be signaled in the bitstream or defined with a profile or
level.

In some embodiments, location data is included in the
bitstream and associated with the start of a tile. However,
location data may not be included for every tile in the bit-
stream. This facilitates and encoder and decoder to operate a
different levels of parallelism. For example, an encoder could
use 64 tiles while only including 4 locations in the bitstream.
This enables parallel encoding with 64 processes and parallel
decoding with 4 processes. In some embodiments, the num-
ber of locations in the bitstream is specified in a manner
known both to the encoder and decoder. For example, the
number of markers may be signaled in the bitstream or
defined with a profile or level.

Referring to FIG. 13, one exemplary technique for explic-
itly identifying the start of a tile is illustrated. The value of a
tile index is initialized (Tileldx=0), the value of a previous tile
location is initialized (PreviousLocation=0), the value of a
previous tile size is initialized (PreviousTileSize=0), and the
value of a number of'tiles is initialized (TileCount=(num_col-
umns_minusl+1)*(num_rows_minus1+1) 300. The tile data
is written to the bit-stream of the first largest coding unit
(LCU) of the tile 310, which in the initial case of a picture is
typically the LCU in the upper left hand corner. Tile data is the
data necessary to reconstruct the pixel values within a tile. If
there is another tile to be written 320 then a set of values may
be modified. A current tile size may be updated which indi-
cates the number of largest coding units in the tile
(CurrentTileSize=Currentlocation-PreviousLocation) 330,
where Currentl.ocation is the position of the start of the
current tile in the bitstream. In an alternative embodiment, the
current tile size may be updated to indicate the number of
coding units in the tile. A tile differential offset 340 may be
updated which indicates an offset between the current file size
and the previous tile size. The previous location may be set to
the current location (PreviousLocation=Currentl.ocation),
the previous tile size may be set to the current tile size
(PreviousTileSize=CurrentTileSize), and the tile index may
be incremented (Tileldx=Tileldx+1) 350. The first LCU of
the next tile may be written with data 310. This recursive
process is repeated until there are no additional tiles to be
written 355 within a slice.

Ifthe tile count is greater than one (TileCount>1) 360 then
the presence of the tile location information flag may be set
(TileLocationInformationPresentFlag=T.) 370. Also, a set of
values may also be written 380, including for example, Tile-
LocationInformationFlag, TileDifferentialOffset[0], TileDit-
ferentialOffset[1], . . . , TileDifferentialOffset[NumberOfT-
ilesMinus1-1], where NumberOfTilesMinusl is equal to

US 9,325,999 B2

11

TileCount-1. In some embodiments the set of values 380 is
written to the slice header. In the case that there is only one tile
360, then the storing of the additional data related to the tiles
is skipped 385. In some embodiments, TileDifferential Offset
represents the tile size within current slice.

Referring to FIG. 14, one exemplary technique for implic-
itly identifying the start of a tile is illustrated. The value of a
tile index is initialized (Tileldx=0), a previous tile location is
initialized (PreviousLocation=0), and a previous tile size is
initialized (PreviousTileSize=0) 400. The tile data is written
to the bit-stream of the first largest coding unit (LCU) of the
tile 410, which in the initial case of a picture is typically the
LCU in the upper left hand corner. If there is another tile to be
written 420 then a set of values are written to a coding unit of
atile 425. The values written 425 may include markers and/or
tile header information, where tile header and light weight tile
header or equivalent. The tile header information, may
include for example, the largest coding unit address, the slice
index, and quantization parameter information. The first LCU
of'the next tile is written with data 410. This recursive process
is repeated until there are no additional tiles to be written 430.
It is to be understood, that both implicit and/or explicit sig-
naling of the tile start locations may be included within the
bitstream.

Referring to FIG. 15, the tile header may include one or
more of a tile index value, in addition to the LCU address, the
slice index, and/or the quantization parameter information. In
some cases, the LCU address is replaced by a tile index value,
Tileldx. In some cases, the slice index is replaced by a slice
parameter set index that indicates a slice parameter set previ-
ously transmitted within the bitstream. A slice parameter set
may contain but is not restricted to values for quantization
parameter, entropy coder initialization parameters, reference
list parameters, or loop filter parameters, The tile index value
may be any suitable value, such as for example, the tile index
minus 1. In this manner the tiles are numbered in a sequential
manner, with the first tile having a number of 0. By including
a tile index value, the decoding of the tiles is less computa-
tionally complex. In some embodiments of the invention, tile
index values are only in tile headers that do not correspond to
a first tile in the bit-stream or slice.

In addition, for a particular slice a flag may be included in
the tile header that indicates whether to use the current infor-
mation in the slice header or previously transmitted informa-
tion in a slice header. This further reduces the computational
complexity of the system and also reduces the bit rate of the
bitstream.

In one embodiment of the invention, the presence of the
flag may be indicated in the bitstream with a slice_param-
eter_set_present_flag. The syntax for the slice_param-
eter_set_present_flag may be as follows:

Pic_parameter_set_rbsp() { Descriptor

pic_parameter_set_id ue(v)

slice_parameter_set_present_flag
rbsp_trailing bits()

u(l)

The slice_parameter_set_present_flag signals in the bit-
stream whether slice parameter sets are transmitted. One
exemplary syntax is for the picture parameter set. The slice
parameter set index is transmitted in the bit-stream only in the
that the slice_parameter_set_present flag indictates that slice
parameter sets are transmitted in the bit-stream. If “slice_pa-
rameter_set_present_flag” is present and is set to a TRUE

20

40

45

50

55

60

12

value then slice_parameter_set_flag is signaled. If “slice_pa-
rameter_set_present_flag” is present and set to a FALSE
value then slice_parameter set flag is not signaled. In some
embodiments, when “slice_parameter_set_present_flag” is
setto aFALSE value, then information from previously trans-
mitted slice headers is used. In some embodiments, the TRUE
value may be equal to 1. In some embodiments, the FALSE
value may be equal to 0. For some tile headers this process
may be skipped as signaled by the flag slice_parameter_
set_flag, as indicated below. For some embodiments of the
invention, the flag slice_parameter_set_flagis inferred tobe a
true value.

Referring to FIG. 16, the tile header may also include a
slice parameter set index value. The slice parameter set index
value may refer to one or more sets of slice parameter sets,
which are the previously transmitted information in a slice
header. Each of the slice parameter sets may include, for
example, a quantization parameter (QP), context-based adap-
tively binary arithmetic coding information (cabac_init_idc),
a reference picture list modification, or loop filter informa-
tion. The loop filter information, typically includes for
example, adaptive loop filter information, sample adaptive
offset information, or deblocking filter information.

An exemplary syntax for a tile header is as follows:

tile_header(){ Descriptor

tile_idx-1
If(slice_parameter_set_present_flag)

u(v)

Slice_parameter_set_flag
if(slice_parameter_set_flag)
slice_parameter_set_id
slice_parameter_set_id

u(l)

ue(v)

slice_parameter_set_id: represents the slice parameter set
index value and refers to a particular slice parameter set
previously transmitted within the bitstream. FIG. 16 illus-
trates how different tile headers may contain two different
slice_parameter_set_id and refer to two different slice param-
eter sets previously transmitted within the bitstream.

The tile_idx-1 may specify the tile index minus 1. The
tile_idx-1 may be an unsigned number. The tile_idx-1 may
use v-bits where v is determined based upon the maximum
number of tiles in the picture. For example, v may be calcu-
lated as: RoundAbove(log 2(TileCount-1)) where Round-
Above(x) represents rounding to the first integer value equal
to or larger than x.

As previously described, the slice_parameter_set_flag
specifies if a slice_parameter_set_id is transmitted in the
bitstream. If the slice_parameter_set_flag is a first value no
slice_parameter_set_id is transmitted in the bitstream and the
existing active slice parameter set is used for the tile. In one
embodiment, the active slice parameter set is the slice param-
eter set used by the previous tile. In a second embodiment, the
active slice parameter set is the slice parameter set used by the
last coding unit in the previous tile. If slice_parameter_
set_flag is a second value, a slice_parameter_set_id is trans-
mitted in the bitstream. In one embodiment, the first and
second values are 0 and 1, respectively.

The slice parameter set id specifies the slice parameter set
id referred to by the tile.

Referring to FIG. 17, a flag may be included at the end of
the tile to indicate its end. In this manner, the computational
complexity with determining the end of the tile may be sim-
plified.

US 9,325,999 B2

13

In some cases, the description has illustrated techniques for
the creation of the bitstream with suitable data for the slices
and/or tiles. With this information being included within the
bitstream in a suitable manner, the decoder can similarly
receive this data and use it to more effectively decode the
bitstream.

As previously described in relation to FIG. 7 and FIG. 8,
the use of tiles facilitates a higher compression efficiency and
further facilitates parallel encoding and decoding of the pic-
tures. The tiles may or may not be independent of one another.
In order to more efficiently determine the length of a particu-
lar tile, together in a manner that reduces the signaling over-
head in the bitstream, it is desirable to include data in a slice
header (or any other suitable location) for the picture that
indicates when a byte-alignment is reached between the dif-
ferent tiles. By providing a byte alignment indication, the
system may determine the end of the tile in a forward looking
manner a byte at a time. Any data that is written after the byte
alignment is reached starts at the byte boundary with respect
to a reference point in the bitstream. In one embodiment, the
byte alignment may be measured with respect to the end of a
slice header. In a second embodiment, the byte alignment
may be measured with the respect of the start of the network
abstraction unit layer, which may contain a slice header, slice
data and/or network abstraction layer start codes. In addition,
the system may include zero-padding of bits of different
lengths between different tiles in the bitstream, to facilitate
byte alignment. In some cases, no zero-padding is necessary
between some tiles.

Referring to FIG. 18, each of the tiles may be explicitly
signaled in the bitstream. As illustrated, each of the tiles may
be provided in a sequential manner in the bitstream. A set of
tile location data which is byte aligned may be provided in a
header for the picture, slice, or otherwise, for example which
may be associated with the first largest coding unit, identify-
ing the byte alignment for each tile relative to a reference
location in the bitstream. For example, the tile location infor-
mation stored in the first slice header may include informa-
tion for all (or a subset thereof) of the remaining tiles within
the slice, but does not necessarily include information for the
first tile, since it is located immediately after the slice header.
At the end of each tile the system may terminate the corre-
sponding entropy decoding process for the corresponding
tile, and a series of zero pad may be included until the fol-
lowing tile is byte aligned. The zero pad data is typically not
entropy decoded. The last tile may likewise be zero padded
until byte alignment is reached. The entropy decoding may
use a CABAC or CAVLC process. The entropy decoder may,
if desired, be reset for each tile.

Referring to FIG. 19, each of the tiles may be implicitly
signaled in the bitstream. As illustrated, each of the tiles may
be provided in a sequential manner in the bitstream. A start of

40

45

50

14

tile marker, which is byte aligned for a tile, may be provided
in the bitstream for each respective tile (or a subset thereof).
The start of tile marker may be 0x000002 in hexadecimal The
system does not necessarily include a start of tile marker for
the first tile, since it is located immediately after the slice
header. At the end of each tile the system may terminate the
corresponding entropy decoding process for the correspond-
ing tile, and a series of zero pad may be included until the
following tile is byte aligned. The zero pad data is typically
not entropy decoded. The last tile may likewise be zero pad-
ded until byte alignment is reached. The entropy decoding
may use a CABAC or CAVLC process, where CABAC
denotes a context adaptive binary arithmetic coding method
and CAVLC denotes a context adaptive variable length cod-
ing method. The entropy decoder may, if desired, be reset for
each tile.

In another embodiment, one technique to reduce the over-
head in searching for the start of tiles is to require that each of
the tiles is byte aligned. Thus, each tile will start at a byte
boundary with respect to a reference location in the bitstream.
Also, the tiles may include zero padding until the byte align-
ment is reached. The last tile of a slice may likewise include
zero padding until the byte alignment is reached.

The terms and expressions which have been employed in
the foregoing specification are used therein as terms of
description and not of limitation, and there is no intention, in
the use of such terms and expressions, of excluding equiva-
lents of the features shown and described or portions thereof,
it being recognized that the scope of the invention is defined
and limited only by the claims which follow.

We claim:

1. A method for decoding video comprising:

(a) decoding a frame of' said video in a bitstream, said frame

including both slices and tiles, each of said tiles defines
a rectangular region of said frame and includes a plural-
ity of macroblocks arranged in a raster scan order, said
tiles are arranged in a raster scan order in said frame, said
decoding of said frame including decoding each of said
tiles in said raster scan order and decoding each of said
plurality of macroblocks within each of said tiles in said
raster scan order;

(b) receiving a flag in said bitstream to indicate at the end of
one of said tiles when a location is the end of one of said
tiles, wherein said bitstream includes zero-padding of
bits at the end of the tile until byte alignment is reached.

2. The method of claim 1 wherein each of said tiles is
decoded in a manner that is independent of one another.

3. The method of claim 1 wherein said zero-padding of bits
is not entropy decoded.

4. The method of claim 1 wherein said location is provided
in a header for said slice.

#* #* #* #* #*

